Acknowledgment. We thank the Committee on Research and Conference Grants of the University of Hong Kong for financial support.

Registry No. trans-[Ru(NH₃)₄Cl₂]Cl, 63251-19-4; trans-[Ru-(NH₃)₄I₂]I, 97134-68-4; trans-[Ru(NH₃)₄(NCS)₂]NCS, 97134-70-8; trans-[Ru(NH₃)₄O₂]Cl₂, 38882-90-5.

> Contribution from the Department of Chemistry, University of Mar del Plata, 7600 Mar del Plata, Argentina, and Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

Extended Correlation between O-F Bond Energies and ¹⁹F NMR Chemical Shifts in Fluoroxy Compounds

E. Ghibaudi,[†] A. J. Colussi,^{*†} and Karl O. Christe^{*‡}

Received October 2, 1984

Bond energies D_{RO-F} and ¹⁹F NMR chemical shifts ϕ markedly depend on the nature of the R group in fluoroxy compounds. It has been shown¹ recently that the direct correlation between $D_{\rm RO-F}$ and ϕ , which is nearly linear over a wide (13 kcal/mol; 100 ppm) range, (1) may be taken as evidence of three-center bonding² in these species, (2) is consistent with changes in the electron population of the π^* -SOMO of OF, and (3) reveals the shortcomings of semiquantitative theories of paramagnetic shielding for the fluorine nucleus.³

We wish to report now that an extended set of data, including an experimental measurement of ϕ in NO₂OF ($\phi = 220$)⁴ together with existing values for F_2O_2 ($D_{O-F} = 18 \text{ kcal/mol}; \phi = 825$)⁵ and FOH (54 kcal/mol; 21 ppm),^{5a,6} confirms the above conclusions but requires an improved correlation to account for the extremely large spans of both parameters. A nonlinear leastsquares fit⁷ of the S-shaped D vs. ϕ plot (Figure 1) leads to the expression

$$D = 37.1 + 18.1 \tanh \left[(222.7 - \phi) / 117.5 \right]$$
(1)

This correlation provides a useful predictor of the O-F bond energies of fluoroxy compounds from readily accessible spectroscopic data.8 It also represents a critical test of ab initio calculations of magnetic shielding constants for heavy nuclei.¹⁰

[†]University of Mar del Plata.

[‡]Rocketdyne, A Division of Rockwell International.

- (1) Ghibaudi, E.; Colussi, A. J. Inorg. Chem. 1984, 23, 635
- Spratley, R. D.; Pimentel, G. D. J. Am. Chem. Soc. 1966, 88, 2394. Saika, A.; Slichter, C. P. J. Chem. Phys. 1954, 22, 26.
- (4) Determined for neat liquid NO₂OF at 84.6 MHz using CFCl₃ as external standard. The measured shift increased from 218.7 ppm at -95 °C to 219.6 ppm at -45 °C. Positive shifts are downfield from CFCl₃.
 (5) (a) "JANAF Thermochemical Tables", 2nd ed.; U.S. Department of
- Commerce: Washington, D.C., 1971 (and supplements). (b) Nikitin, I. V.; Rosolovskii, W. Ya. Russ. Chem. Rev. (Engl. Transl.) 1971, 40, 889.
- (6) Hindman, J. C.; Svirmickas, A.; Appelman, E. H. J. Chem. Phys. 1972, 57.4542
- Bevington, P. R. "Data Reduction and Error Analysis for the Physical (7)Sciences"; McGraw-Hill: New York, 1969; p 237.

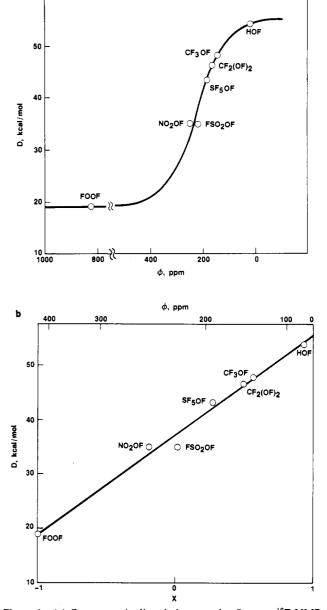


Figure 1. (a) Spectroscopic dissociation energies D_{O-F} vs. ¹⁹F NMR chemical shifts ϕ for fluoroxy compounds. (b) D_{O-F} vs. X, where X is $\tanh [(222.7 - \phi)/117.5]$. The parameters have been determined by using the Marquardt algorithm.

Acknowledgment. K.O.C. is grateful to the Office of Naval Research for financial support.

Registry No. NO₂OF, 7789-26-6.

- (10)
- (a) Iwai, M.; Saika, A. J. Chem. Phys. 1982, 77, 1951. (b) Garg, S. K.; Tse, J. S. Chem. Phys. Lett. 1982, 92, 150. (c) For substituent effects on ¹³C NMR chemical shifts, see: Craik, D. J.; Brownless, R. T. C. Prog. Phys. Org. Chem. 1983, 14, 1.

Thus for example, from experimental observations⁹ and an assumption (8)that the marginally stable SF_5OOF decomposes by $SF_5OOF = SF_5OO$. + F (k_1), followed by the fast reactions SF₅OO = SF₅ + O₂ and SF₅. + F = SF₆, we predict from the expression¹ log $[k_1(s^{-1})] \sim 15.3 - E/(10^{-3} 4.575 \text{ T})$ a value for D of about 22 kcal/mol, in good agreement with the one derived from eq. 1 for $\phi = 330$. Obviously, overall rates of gas-phase chain reactions or heterogeneous decompositions are partially controlled by D values. The relatively large errors $(\pm 1 \text{ kcal/mol})$ and probably larger in the case of F_2O_2) usually associated with D values would normally preclude using any such correlation to estimate NMR chemical shifts with a precision comparable to those attained by direct measurement. Notice, however, that ϕ in F₂O₂ changes by about 40 ppm from neat liquid to infinite dilution.^{5b} DesMarteau, D. D.; Hammaker, R. M. Isr. J. Chem. **1978**, 17, 103.